Product Description

Xhw85pg4 Part Electric or Manual Operator Turn Quadrant Wormgear Two-Stage Worm Gearbox for Valve

                   
 

NO. Description Material Material number
1 Bolts Carbon Steel ASTM A29M-1571
2 Indicator Plate Carbon Steel ASTM A29M-1571
3 O-ring Rubber NBR
4 Oil seal Rubber NBR
5 Handwheel indicator Carbon Steel ASTM A29M-1571
6 Bolts Carbon Steel ASTM A29M-1045
7 Cover Carbon Steel/ Ductile iron ASTM A216 WCB/ ASTM A536 65-45-12
8 Sealing Gasket Insulation paper  
9 Worm Gear Ductile iron ASTM A536 65-45-12
10 Stem Bush Carbon Steel ASTM A29M-1571
11 Snap Ring Carbon Steel ASTM A29-1566
12 End Cover Carbon Steel ASTM A29M-1571
13 Bearing Alloy Steel ASTM A295-52100
14 Body Carbon Steel/ Ductile iron ASTM A216 WCB/ ASTM A536 65-45-12
15 Grease Nipple Carbon Steel ASTM A29M-1571
16 Worm Carbon Steel ASTM A29M-1045
17 Key Carbon Steel ASTM A29M-1045
18 Reduction body Carbon Steel/ Ductile iron ASTM A216 WCB/ ASTM A536 65-45-12
19 Bolts Carbon Steel ASTM A29M-1045
20 Bearing Alloy Steel ASTM A295-52100
21 Gears Carbon Steel ASTM A29M-1045
22 Snap Ring Carbon Steel ASTM A29-1566
23 Reduction cover Carbon Steel/ Ductile iron ASTM A216 WCB/ ASTM A536 65-45-12
24 Washer of nuts Carbon Steel ASTM A29M-1571
25 Adjusting nuts Carbon Steel ASTM A29M-1045
26 Adjusting Bolts Carbon Steel ASTM A29M-1045

Dimension

DIM
 
MODEL
Mounting Base External Part Input Shaft Part Handwheel
Type Flange Size D1 P.C.D D3 H0 H1 H2 K K1 K2 K3 L L2 L1 PD KEY M
D2 N-H-DP
KB-0-1S  
A
F-12 85 125 4-M12-18 150 3 66 204 91 48 51 220 83 161 31 21 6 300
KB-01-1S F-14 100 140 4-M16-24 175 4 75 225 94 48 61 276 93 171 31 21 6 350
KB-02-1S F-16 130 165 4-M20-30 210 5 92 286 110 64 68 350 113 205 40 28 8 450
KB-03-1S  
 
B
(F-20) 140 205 8-M16-24 250 5 111 325 112 58 68 362 126 217 40 28 8 500
KB-04-1S F-25 200 254 8-M16-24 300 5 144 383 124 63 100 426 158 246 40 28 8 600
KB-05-1S F-30 230 298 8-M20-30 350 5 160 453 143 71 101 464 190 284 40 28 8 650
KB-06-1S F-35 260 356 8-M30-45 415 5 200 525 169 91 119 498 224 318 40 28 8 700
KB-07-1S B F-40 300 406 8-M36-54 475 8 225 619 190 101 155 457 237 417 60 38 10 800
KB-08-1S F-40 300 406 8-M36-50 475 8 270 668 201 102 155 499 279 459 60 38 10 900
KB-09-1S C F-48 370 483 12-M36-54 560 8 338 790 232 116 561 341 521 60 38 10 900

Technical Parameters

PARA
 
MODEL
 
Ratio
Flange Size (ISO5211) Max Valve Stem dmax Max Torque M.A. Weight
Input Output
mm Nm Nm 10% Kg
KB-0-1S 63:1 F-12 40 (12 X 8) 65 1000 16.1 19
KB-01-1S 74:1 F-14 50 (14 X 9) 100 1850 18.9 21
KB-02-1S 129:1 F-16 60 (18 X 11) 90 3000 33 38
KB-03-1S 158:1 ( F-20 ) 70 (20 X 12) 105 4200 40 41
KB-04-1S 179:1 F-25 90 (25 X 14) 160 6500 41 64
KB-05-1S 177:1 F-30 105 (28 X 16) 225 10000 45 91
KB-06-1S 201:1 F-35 120 (32 X 18) 295 15000 51 137
KB-07-1S 202:1 F-40 140 (36 X 20) 590 28000 48 220
KB-08-1S 244:1 F-40 165 (40 X 22) 890 48000 54 290
KB-09-1S 234:1 F-48 190 (45 X 25) 1300 72000 56 450

Remark:
input torque=output torque/M.A.
 

Related products

Our Company
Ever-power Group specialist in making all kinds of mechanical transmission and hydraulic transmission like: planetary gearboxes, worm reducers, in-line helical gear speed reducers, parallel shaft helical gear reducers, helical bevel reducers, helical worm gear reducers, agricultural gearboxes, tractor gearboxes, auto gearboxes, pto shafts, special reducer & related gear components and other related products, sprockets, hydraulic system, vacuum pumps, fluid coupling, gear racks, chains, timing pulleys, udl speed variators, v pulleys, hydraulic cylinder, gear pumps, screw air compressors, shaft collars low backlash worm reducers and so on. furthermore, we can produce customized variators, geared motors, electric motors and other hydraulic products according to customers’ drawings.
We provides a reliable grantee for the product’ s quality by advanced inspection and testing equipment. professional technical team, exquisite processing technology and strict control system. 
In recent years, the company has been developing rapidly by its rich experience in production, advanced management system, standardized management system, strong technical force. We always adhere the concept of survival by quality, and development by innovation in science and technology. 
Our Group is willing to work with you hand in hand and create brilliance together! 

Material available

Low carbon steel, C45, 20CrMnTi, 42CrMo, 40Cr, stainless steel. Can be adapted regarding customer requirements.

Surface treatment

Blacking, galvanization, chroming, electrophoresis, color painting, …

 

Heat treatment

High frequency quenching heat treatment, hardened teeth, carbonizing, nitride, …
 

Certifications

FAQ:
 

Q: Are you trading company or manufacturer ?

A: Our group consists in 3 factories and 2 abroad sales corporations.

Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: How long is your delivery time ? What is your terms of payment ?
A: Generally it is 40-45 days. The time may vary depending on the product and the level of customization. For standard products, the payment is: 30% T/T in advance ,balance before shippment.

Q: What is the exact MOQ or price for your product ?
A: As an OEM company, we can provide and adapt our products to a wide range of needs.Thus, MOQ and price may greatly vary with size, material and further specifications; For instance, costly products or standard products will usually have a lower MOQ. Please contact us with all relevant details to get the most accurate quotation.

If you have another question, please feel free to contact us.

Packing & Delivery

 

 

 

 

Choosing a Gearbox For Your Application

The gearbox is an essential part of bicycles. It is used for several purposes, including speed and force. A gearbox is used to achieve 1 or both of these goals, but there is always a trade-off. Increasing speed increases wheel speed and forces on the wheels. Similarly, increasing pedal force increases the force on the wheels. This makes it easier for cyclists to accelerate their bicycles. However, this compromise makes the gearbox less efficient than an ideal one.
gearbox

Dimensions

Gearboxes come in different sizes, so the size of your unit depends on the number of stages. Using a chart to determine how many stages are required will help you determine the dimensions of your unit. The ratios of individual stages are normally greater at the top and get smaller as you get closer to the last reduction. This information is important when choosing the right gearbox for your application. However, the dimensions of your gearbox do not have to be exact. Some manufacturers have guides that outline the required dimensions.
The service factor of a gearbox is a combination of the required reliability, the actual service condition, and the load that the gearbox will endure. It can range from 1.0 to 1.4. If the service factor of a gearbox is 1.0, it means that the unit has just enough capacity to meet your needs, but any extra requirements could cause the unit to fail or overheat. However, service factors of 1.4 are generally sufficient for most industrial applications, since they indicate that a gearbox can withstand 1.4 times its application requirement.
Different sizes also have different shapes. Some types are concentric, while others are parallel or at a right angle. The fourth type of gearbox is called shaft mount and is used when mounting the gearbox by foot is impossible. We will discuss the different mounting positions later. In the meantime, keep these dimensions in mind when choosing a gearbox for your application. If you have space constraints, a concentric gearbox is usually your best option.

Construction

The design and construction of a gearbox entails the integration of various components into a single structure. The components of a gearbox must have sufficient rigidity and adequate vibration damping properties. The design guidelines note the approximate values for the components and recommend the production method. Empirical formulas were used to determine the dimensions of the various components. It was found that these methods can simplify the design process. These methods are also used to calculate the angular and axial displacements of the components of the gearbox.
In this project, we used a 3D modeling software called SOLIDWORKS to create a 3-D model of a gear reducer. We used this software to simulate the structure of the gearbox, and it has powerful design automation tools. Although the gear reducer and housing are separate parts, we model them as a single body. To save time, we also removed the auxiliary elements, such as oil inlets and oil level indicators, from the 3D model.
Our method is based on parameter-optimized deep neural networks (DBNs). This model has both supervised and unsupervised learning capabilities, allowing it to be self-adaptive. This method is superior to traditional methods, which have poor self-adaptive feature extraction and shallow network generalization. Our algorithm is able to recognize faults in different states of the gearbox using its vibration signal. We have tested our model on 2 gearboxes.
With the help of advanced material science technologies, we can now manufacture the housing for the gearbox using high-quality steel and aluminium alloys. In addition, advanced telematics systems have increased the response time of manufacturers. These technologies are expected to create tremendous opportunities in the coming years and fuel the growth of the gearbox housing market. There are many different ways to construct a gearbox, and these techniques are highly customizable. In this study, we will consider the design and construction of various gearbox types, as well as their components.
gearbox

Working

A gearbox is a mechanical device that transmits power from 1 gear to another. The different types of gears are called planetary gears and are used in a variety of applications. Depending on the type of gearbox, it may be concentric, parallel, or at a right angle. The fourth type of gearbox is a shaft mount. The shaft mount type is used in applications that cannot be mounted by foot. The various mounting positions will be discussed later.
Many design guidelines recommend a service factor of 1.0, which needs to be adjusted based on actual service conditions. This factor is the combined measure of external load, required reliability, and overall gearbox life. In general, published service factors are the minimum requirements for a particular application, but a higher value is necessary for severe loading. This calculation is also recommended for high-speed gearboxes. However, the service factor should not be a sole determining factor in the selection process.
The second gear of a pair of gears has more teeth than the first gear. It also turns slower, but with greater torque. The second gear always turns in the opposite direction. The animation demonstrates this change in direction. A gearbox can also have more than 1 pair of gears, and a first gear may be used for the reverse. When a gear is shifted from 1 position to another, the second gear is engaged and the first gear is engaged again.
Another term used to describe a gearbox is “gear box.” This term is an interchangeable term for different mechanical units containing gears. Gearboxes are commonly used to alter speed and torque in various applications. Hence, understanding the gearbox and its parts is essential to maintaining your car’s performance. If you want to extend the life of your vehicle, be sure to check the gearbox’s efficiency. The better its functioning, the less likely it is to fail.

Advantages

Automatic transmission boxes are almost identical to mechanical transmission boxes, but they also have an electronic component that determines the comfort of the driver. Automatic transmission boxes use special blocks to manage shifts effectively and take into account information from other systems, as well as the driver’s input. This ensures accuracy and positioning. The following are a few gearbox advantages:
A gearbox creates a small amount of drag when pedaling, but this drag is offset by the increased effort to climb. The external derailleur system is more efficient when adjusted for friction, but it does not create as little drag in dry conditions. The internal gearbox allows engineers to tune the shifting system to minimize braking issues, pedal kickback, and chain growth. As a result, an internal gearbox is a great choice for bikes with high-performance components.
Helical gearboxes offer some advantages, including a low noise level and lower vibration. They are also highly durable and reliable. They can be extended in modular fashion, which makes them more expensive. Gearboxes are best for applications involving heavy loads. Alternatively, you can opt for a gearbox with multiple teeth. A helical gearbox is more durable and robust, but it is also more expensive. However, the benefits far outweigh the disadvantages.
A gearbox with a manual transmission is often more energy-efficient than 1 with an automatic transmission. Moreover, these cars typically have lower fuel consumption and higher emissions than their automatic counterparts. In addition, the driver does not have to worry about the brakes wearing out quickly. Another advantage of a manual transmission is its affordability. A manual transmission is often available at a lower cost than its automatic counterpart, and repairs and interventions are easier and less costly. And if you have a mechanical problem with the gearbox, you can control the fuel consumption of your vehicle with appropriate driving habits.
gearbox

Application

While choosing a gearbox for a specific application, the customer should consider the load on the output shaft. High impact loads will wear out gear teeth and shaft bearings, requiring higher service factors. Other factors to consider are the size and style of the output shaft and the environment. Detailed information on these factors will help the customer choose the best gearbox. Several sizing programs are available to determine the most appropriate gearbox for a specific application.
The sizing of a gearbox depends on its input speed, torque, and the motor shaft diameter. The input speed must not exceed the required gearbox’s rating, as high speeds can cause premature seal wear. A low-backlash gearbox may be sufficient for a particular application. Using an output mechanism of the correct size may help increase the input speed. However, this is not recommended for all applications. To choose the right gearbox, check the manufacturer’s warranty and contact customer service representatives.
Different gearboxes have different strengths and weaknesses. A standard gearbox should be durable and flexible, but it must also be able to transfer torque efficiently. There are various types of gears, including open gearing, helical gears, and spur gears. Some of the types of gears can be used to power large industrial machines. For example, the most popular type of gearbox is the planetary drive gearbox. These are used in material handling equipment, conveyor systems, power plants, plastics, and mining. Gearboxes can be used for high-speed applications, such as conveyors, crushers, and moving monorail systems.
Service factors determine the life of a gearbox. Often, manufacturers recommend a service factor of 1.0. However, the actual value may be higher or lower than that. It is often useful to consider the service factor when choosing a gearbox for a particular application. A service factor of 1.4 means that the gearbox can handle 1.4 times the load required. For example, a 1,000-inch-pound gearbox would need a 1,400-inch-pound gearbox. Service factors can be adjusted to suit different applications and conditions.

China OEM Xhw85pg4 Part Electric or Manual Operator Turn Quadrant Wormgear Two-Stage Worm Gearbox for Valve     near me supplier China OEM Xhw85pg4 Part Electric or Manual Operator Turn Quadrant Wormgear Two-Stage Worm Gearbox for Valve     near me supplier